ЛА-н4USB

Внешнее высокочастотное устройство аналогоцифрового преобразования для IBM PC/AT совместимых компьютеров на шину USB

> Руководство пользователя

ООО «РУДНЕВ-ШИЛЯЕВ»

E-mail: adc@rudshel.ru; http://www.rudshel.ru; http://www.pcboards.ru

Внешнее устройство аналого-цифрового преобразования для IBM PC/AT-совместимых компьютеров ЛА-н4USB

Руководство по эксплуатации

ООО "Руднев-Шиляев"

ООО "Руднев-Шиляев" сформировалось на базе известного Института радиотехники и электроники Российской Академии наук (ИРЭ РАН) и занимается проблемами аналогово-цифрового преобразования (АЦП) и последующей обработкой сигналов. Научно-технический потенциал специалистов фирмы позволил за короткий срок разработать и представить на Российский рынок платы сбора данных (ПСД) с нормированными метрологическими характеристиками. Широкий спектр плат позволяет пользователю гибко подойти к решению своей задачи. От простых, но высококачественных плат, позволяющих производить мониторинг технологических процессов до высокоточных измерительных плат, являющихся средством измерения. Вся выпускаемая продукция фирмы подвергается тщательной поверке службой технического контроля. ООО "Руднев-Шиляев" использует как известные и общепринятые методики, так и оригинальные, разработанные специалистами фирмы для калибровки аналогово-цифровых каналов в реальных условиях его применения по динамическим параметрам: отношение сигнал/шум, коэффициент гармонических искажений, реальный динамический диапазон и число эффективных разрядов в зависимости от частоты входного воздействия на АЦП.

Знания этих характеристик позволяют более корректно решать задачу применения АЦП в реальных условиях и дают возможность до эксперимента оценить погрешности, вносимые всем аналогово-цифровым каналом в конечный результат измерения. Таким образом, можно сравнивать изделия ООО "Руднев-Шиляев" с аналогичной продукцией других производителей по указанным выше динамическим параметрам.

Компьютеры в наше время становятся не только вычислительными средствами, они превращаются в универсальные виртуальные измерительные приборы. Устройства на основе персонального компьютера (ПК) - заменяют стандартные измерительные приборы: вольтметры, самописцы, осциллографы, генераторы, спектроанализаторы и другие на систему виртуальных приборов. Такая система состоит из компьютера, наличие которого сегодня является необходимым условием качественных и быстрых измерений, и одной или нескольких плат сбора данных (ПСД), причём, программная часть виртуального прибора может эмулировать переднюю управляющую панель стационарного измерительного устройства. Платы ЗАО "Руднев-Шиляев" позволяют превратить Ваш компьютер в универсальную измерительную лабораторию. Параметры такого прибора: динамический и частотный диапазоны, чувствительность, разрешение и другие характеристики определяются выбранными устройствами ООО "Руднев-Шиляев". Выпускаемые устройства можно разбить на несколько групп: измерительные платы АЦП и ЦАП, цифровые ТТЛ-совместимые платы и дополнительные согласующие устройства. Большой спектр функционально совместимых устройств, выпускаемых ООО "Руднев-Шиляев" позволяет создавать комплексы обработки сигналов на базе персонального компьютера ІВМ РС.

Такие системы с использованием плат ООО "Руднев-Шиляев" используются как метрологические средства измерений для калибровки микросхем АЦП на этапе разработки и при выходном контроле; для калибровки радиоканалов по динамическим параметрам; для анализа сложных быстропротекающих процессов в различных областях научно-производственной деятельности. Нашими заказчиками являются: ЛИИ (г. Жуковский), ЦАГИ, ВНИИФТРИ, ВНИИМС, ИРЭ РАН, НИИИТ, ИГД им. Скочинского, ОКБ МЭИ, ЦИАМ, НИИТП, ВНИИЖТ, МИФИ, МГУ и многие другие не только в нашей стране, а также в ближнем и дальнем зарубежье.

СОДЕРЖАНИЕ

1.	BBE	ДЕНИЕ	4
2.		РМАТИВНЫЕ ССЫЛКИ	
3.	ОП	РЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ	5
(3.1.	Список сокращений	
(3.2.	Список определений	5
4.	TPE	БОВАНИЯ БЕЗОПАСНОСТИ	7
4	4.1.	Требования безопасности для ПЭВМ с подключенным устройством	
J	ПА-н4	USB	
4	4.2.	Требования безопасности для устройства ЛА-н4USB	8
4	4.3.	Заземление	10
4	4.4.	Питание	_
5.	ОПІ	ИСАНИЕ ПРИБОРА И ПРИНЦИПОВ ЕГО РАБОТЫ	11
į	5.1.	Назначение и область применения	
į	5.2.	Условия применения прибора	
į	5.3.	Условия эксплуатации прибора	12
	5.4.	Состав прибора	
	5.5.	Технические характеристики ЛА-н4USB	
	5.6.	Устройство и работа прибора	
		ЦГОТОВКА ПРИБОРА К РАБОТЕ	
	3.1 .	Эксплутационные ограничения	
	6.2.	Распаковывание и повторное упаковывание	
(6.3.	Порядок установки	
	6.3.		
	6.3.		
7.		ОТА С ПРИБОРОМ	
	7.1.	Порядок работы	
	7.2.	Размещение разъемов на приборе	
	7.3.	Назначение и типы разъемов	
	7.4.	Работа с утилитой ADCLab	
8.		УЩИЙ РЕМОНТ	
9.		НСПОРТИРОВАНИЕ И ХРАНЕНИЕ	
10		АРА И УПАКОВКА	
11.		АРКИРОВКА	
ГΑ	PAHT	ИЙНЫЕ ОБЯЗАТЕЛЬСТВА	27

1. ВВЕДЕНИЕ

- 1.1. Настоящее «Руководство по Эксплуатации» (РЭ) предназначено для лиц и обслуживающего персонала, работающих с внешним устройством аналогоцифрового преобразования для IBM PC/AT-совместимых компьютеров ЛА-н4USB (2 канала по 250МГц, 8 разрядов) далее «прибор» или «устройство ЛА-н4USB».
- 1.2. РЭ включает в себя Техническое описание (ТО) все технические сведения о приборе, принципе действия прибора и назначение его составных частей. Подробно описывается Руководство пользователя (РП) конфигурация, установка и настройка прибора. В приложениях РЭ сообщаются дополнительные сведения о работе прибора и его составных частей.
- 1.3. К эксплуатации прибор допускается обслуживающий персонал, хорошо изучивший настоящее РЭ.
- 1.4. В связи с постоянной работой по совершенствованию изделия, повышающей его надежность и улучшающие его эксплуатационные характеристики, в конструкцию прибора могут быть внесены незначительные изменения, не отраженные в настоящем издании РЭ.

2. НОРМАТИВНЫЕ ССЫЛКИ

В настоящем документе использованы ссылки на следующие стандарты:

- 1) ГОСТ 26104-89 (МЭК 348-78) Средства измерений электронные. Технические требования в части безопасности. Методы испытаний п. 4.1.1 на стр. 7 и п. 4.2.1 на стр. 8;
- 2) ГОСТ 12.2.091-94 (МЭК 414-73) Требования безопасности для показывающих и регистрирующих электроизмерительных приборов и вспомогательных частей к ним п. 4.1.2 на стр. 7;
- 3) ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия п. 9.3 на стр. 24;
- 4) ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды п. 9.6 на стр. 25.

3. ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

3.1. Список сокращений

- 1) ПЭВМ ІВМ РС/АТ-совместимый компьютер;
- 2) АЦК аналогово-цифровой канал;
- 3) **АЦП** аналогово-цифровой преобразователь или аналого-цифровое преобразование:
- 4) **ЦАП** цифро-аналоговый преобразователь или цифро-аналоговое преобразование:
- 5) AGND аналоговая земля;
- 6) **DGND** цифровая земля;
- 7) **IDE** (Integrated Drive Electronics) интерфейс устройств со встроенным контроллером;
- 8) С/Ш отношение сигнал-шум.

3.2. Список определений

- 1) ATAPI пакетный интерфейс для подключения CD-ROM и стриммеров;
- 2) **Базовый адрес(BASE)** шестнадцатеричное число, указывающее место платы в адресном пространстве IBM PC;
- 3) **Байт (Byte)** последовательность битов (8 бит). Каждый байт соответствует одному знаку данных, букве, символу, цифре. Используется в качестве единицы ёмкости запоминающих устройств;
- 4) **Бит (Bit)** двоичная единица измерения количества информации («0» или «1»);
- 5) **Слово** определённое сочетание битов, имеющее конечную длину и рассматриваемое как единое целое при передаче, приёме, обработке, отображении и хранении информации. Обычно 16 или 32 бит;
- 6) **Данные (Data)** информация, которая представлена в формализованном виде и предназначена для обработки с помощью технических средств или уже обработана ими;
- 7) **DMA** (Direct Memory Access) прямой доступ в память. Режим передачи данных от периферийного устройства по шине компьютера непосредственно в память, минуя центральный процессор. Более быстрый (до 132 Мб/сек для

- шины PCI) и устойчивый режим, чем программная передача данных (через центральный процессор):
- 8) **Драйвер** блок управления, формирующий нормируемые сигналы на линиях интерфейса; программа управления конкретным периферийным устройством;
- 9) Дифференциальный режим входной сигнал имеет две противофазные составляющие относительно шины земли;
- 10) **FIFO** (**First-in**, **first-out -** первым пришёл, первым ушёл) метод буферизации данных на основе последовательной очереди;
- 11) **Интерфейс** (Interface) совокупность средств и правил, обеспечивающих взаимодействие компонентов вычислительной системы или сети;
- 12) **МЗР** (младший значащий разряд) минимальное входное напряжение, разрешаемое АЦП. Для АЦП с количеством N разрядов в выходном регистре, он равен отношению диапазона входного напряжения АЦП к 2^N .
- 13) Однополюсный режим входной сигнал имеет только одну составляющую относительно шины земли:
- 14) **Однополярный режим** входной сигнал принимает, как правило, только положительные значения, например: 0...+5 Вольт;
- 15)**PCI** (Peripheral Component Interconnect) local bus шина соединения периферийных компонентов ПЭВМ.
- 16) Прерывание преждевременное принудительное прекращение нормальной последовательности выполнения операции вычислительной системой;
- 17) **SCSI** (Small Computer System Interface) интерфейс системного уровня малых компьютеров; в отличие от интерфейсов портов представляет собой шину; допускает подключение к одному компьютеру до 8 устройств внутреннего и внешнего исполнения;
- 18) **Шина (Bus)** группа линий связи, предназначенных для выполнения определённой операции в процессе обмена данными.
- 19) **USB** (Universal Serial Bus) универсальная последовательная шина.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1. Требования безопасности для ПЭВМ с подключенным устройством ЛА-н4USB

- 4.1.1. По степени защиты от поражения электрическим током ПЭВМ, к которой подключается устройство ЛА-н4USB, должна относиться к классу защиты I в соответствии с требованиями ГОСТ 26104-89.
- 4.1.2. Зажим защитного заземления ПЭВМ должен быть выполнен согласно ГОСТ 12.2.091-94 в случае, если по каким либо причинам ПЭВМ не имеет сетевой шнур, у которого зажим защитного заземления является частью сетевой вилки;
- 4.1.3. В ПЭВМ, подключаемой к сети, имеются опасные напряжения, поэтому при её эксплуатации, контрольно-профилактических и регулировочных работах, производимых с ПЭВМ, необходимо строго соблюдать соответствующие меры предосторожности:
- 1) Перед включением ПЭВМ в сеть питания проверить исправность сетевого соединительного шнура и соединение зажима защитного заземления ПЭВМ с шиной защитного заземления;
- 2) Соединение зажима защитного заземления ПЭВМ с шиной защитного заземления производить раньше других присоединений к ПЭВМ, а отсоединение после всех отсоединений;
- 3) В случае использования ПЭВМ к которой подключено устройство ЛАн4USB, совместно с другой аппаратурой, при проведении измерений, при обслуживании и ремонте или включении ПЭВМ в состав установок, соедините зажимы защитного заземления всей аппаратуры в целях выравнивания потенциалов корпусов;

- 4) При ремонте ПЭВМ замену любого элемента, монтаж или демонтаж производить только при отключенном от сети питания сетевом соединительном шнуре;
- 5) Руководствоваться техникой безопасности из руководства пользователя ПЭВМ (в комплект поставки не входит).
- 4.1.4. Разборку схем подключений к ПЭВМ, в которой подключено устройство ЛА-н4USB, начинать с отключения от сети питания всей аппаратуры, последней отключить ПЭВМ.

4.2. Требования безопасности для устройства ЛА-н4USB

- 4.2.1. По степени защиты от поражения электрическим током устройство ЛА-н4USB относится к классу защиты III в соответствии с требованиями ГОСТ 26104-89.
- 4.2.2. Устройство ЛА-н4USB содержит лишь цепи безопасного сверхнизкого напряжения и, согласно ГОСТ 25861-83 (СТ СЭВ 3743-82) п. 2.1.2 примечание, не требует специальной защиты персонала от случайного соприкосновения с вторичными цепями устройства.
- 4.2.3. Для предотвращения выхода из строя устройства ЛА-н4USB на входные разъемы необходимо подавать сигналы с параметрами, указанными в таблице (Таблица 4. 1). Расположения разъёмов указано на рисунках (Рис. 4.1 и 4.2).

Таблица 4. 1 Параметры сигналов, подаваемых на разъемы устройства ЛА-н4USB

Разъем	Описание входного/выходного сигнала		
X1	Внешняя частота дискретизации. Частота 50МГц –500МГц. Амплитуда 0.5 В – 1 В.		
X2	Внешняя синхронизация. Аналоговый сигнал амплитудой до ±5В или ТТЛ-совместимый сигнал. На входе предусмотрено		

4. Требования безопасности

	отключаемое дифференцирование (закрытый/открытый вход ¹).
Х3	Аналоговый сигнал амплитудой до ±25В. На входе предусмотрено отключаемое дифференцирование (закрытый/открытый вход).
X4	Аналоговый сигнал амплитудой до ±25В. На входе предусмотрено отключаемое дифференцирование (закрытый/открытый вход).
X5	Выход сигнала калибратора. Меандр ±1В, 953,67 Гц
X6	Интерфейс USB.
X7	Подключение БП на 12В постоянного тока.

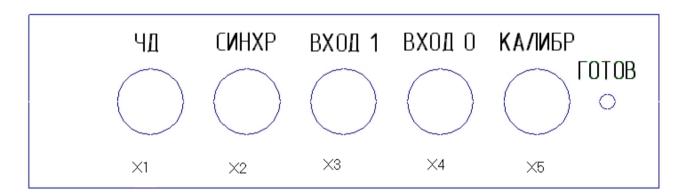


Рис. 4.1. Передняя панель прибора.

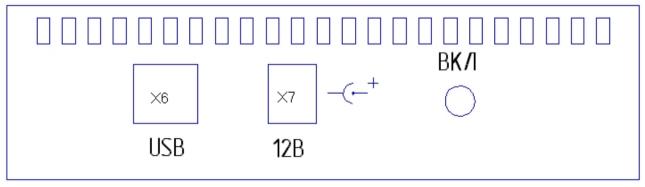


Рис. 4.2. Задняя панель прибора.

 $^{^1}$ Дифференцирование (открытый/закрытый вход) означает следующее: «открытый вход» — пропускается постоянная и переменная составляющие сигнала; «закрытый вход» — пропускается только переменная составляющая сигнала.

Примечание!

При эксплуатации устройства во избежание выхода его из строя необходимо использовать источники сигналов только с известными выходными характеристиками, не превышающими предельно допустимых значений.

4.3. Заземление

Следует особое внимание обратить на соединение прибора с внешними устройствами – источниками сигналов. Если у них есть сетевой вторичный источник питания, необходимо проверить наличие общего заземления для этих устройств и компьютера, к которому подключается устройство ЛА-н4USB. Это заземление должно быть сделано заранее, до того момента, когда будет подано питание на все устройства.

4.4. Питание

Желательно, чтобы все устройства с сетевым питанием использовали одну и ту же фазу (или фазы при трёхфазном питании) питающего напряжения. Это обеспечит одинаковый потенциал у земляного провода устройств, что устранит эффект уравновешения зарядов при присоединении кабелей устройств друг к другу. Этот эффект опасен кратковременным протеканием больших токов даже при обесточенной аппаратуре из-за малого сопротивления земляной шины. Полностью избежать его разрушительного влияния можно, лишь следуя сформулированному выше правилу, т.е. подключая аппаратуру к одной и той же фазе (фазам).

Совет. Попросту говоря, включайте все используемые в одной системе устройства: компьютеры, измерительные приборы и т.д. — в один и тот же сетевой «тройник», и тогда не придется испытывать разочарование от отказа системы при "непонятных" обстоятельствах.

5. ОПИСАНИЕ ПРИБОРА И ПРИНЦИПОВ ЕГО РАБОТЫ

5.1. Назначение и область применения

- 5.1.1. Прибор предназначен для работы в качестве внешнего устройства совместно с ПК типа IBM PC/AT. Основное назначение прибора преобразование непрерывных (аналоговых) входных сигналов в цифровую форму, которая удобна для дальнейшей обработки сигнала при помощи ПК.
- 5.1.2. В качестве ПЭВМ используется ІВМ РС/АТ-совместимый компьютер.
- 5.1.3. При комбинировании прибора с другим оборудованием, выпускаемым ЗАО «Руднев-Шиляев», Ваша ПЭВМ превращается в мощную информационно-измерительную систему, способную решить большинство прикладных задач.

5.2. Условия применения прибора

5.2.1. Нормальные условия применения прибор указаны в таблице (Таблица 5. 1)

Таблица 5. 1 Нормальные условия применения (зависят от типа ПЭВМ)

Температура окружающего воздуха	20±5 °C
Относительная влажность воздуха	от 30 до 80 % при температуре 25 °C
Атмосферное давление	84 – 106 кПа (630 – 795 мм рт. Ст.)

5.2.2. Рабочие условия применения прибора указаны в таблице (Таблица 5. 2).

Таблица 5. 2 Рабочие условия применения (зависят от типа ПЭВМ)

Температура окружающего воздуха	От 5 до 40 °C
Относительная влажность воздуха	90 % при температуре 25 °C
Атмосферное давление	70 – 106,7 кПа (537 – 800 мм рт. ст.)

5.3. Условия эксплуатации прибора

По классификации условий эксплуатации РЭА данный прибор относится к первой группе (Таблица 8. 1).

Таблица 8. 1 Параметры РЭА и определяющие их дестабилизирующие факторы

	Параметры	Значения параметров
1.	Прочность при синусоидальных вибрациях	
	ν, Гц	20
	α , M/c^2	19,6
	t _{выд} , час	>0,45
2.	Обнаружение резонансов в конструкции	
	ν, Гц	1030
	ξ, ΜΜ	0,50,8
	t _{выд} , мин	>0,4
3.	Воздействие повышенной влажности	
	Вл, %	80
	v^1 , K	298
	t _{выд} , ч	48
4.	Воздействие пониженной температуры	
	$v_{,npg}^{1}$, K	233
	v_{p6}^{1} , K	278
	t _{выд} , ч	26
5.	Воздействие повышенной температуры	
	$\upsilon_{прд}$, K	328
	v_{p6} , K	313
	t _{выд} , ч	26

Продолжение Таблица 8.1

6.	Воздействие пониженного атмосферного давления	
	υ, Κ	263
	ρ, кПа	61
	t _{выд} , ч	26
7.	Прочность при транспортировании	
	t _u , MC	510
	ν, мин ⁻¹	4080
	$\alpha_{\text{Makc}}, \text{M/c}^2$	49245
8.	Воздействие соляного (морского) тумана с дисперс-	
	ностью (95% капель) А и водностью Б	
	υ, Κ	300
	А, мкм	110
	Б, г/м ³	23
	t _{выд} , ч	24

5.4. Состав прибора

5.4.1. Состав комплекта поставки прибора ЛА-н4USB указан в таблице (Таблица 5. 3).

Таблица 5. 3

Наименование, тип	Количе- ство	Примечание
I. Упаковочная коробка	1	
В ней:		
1) Устройство ЛА-н4USB;	1	
Ответные части внешних разъемов: BNC	3	
2) Комплект программного обеспечения;	1	CD-ROM
3) Руководство по эксплуатации устрой- ства ЛА-н4USB.	1	Брошюра
4) Кабель USB тип A(m)-B(m)	1	
5) Сетевой источник питания	1	

5.5. Технические характеристики ЛА-н4USB

АНАЛОГО-ЦИФРОВОЙ КАНАЛ

Число аналоговых входов 2 синхронных (два канала АЦП)

Конфигурация аналоговых входов Однополюсные

Входной разъем **BNC**

Входное сопротивление (импеданс) 1МОм, 17пФ

Дифференцирование

Переменная или переменная и по-(устанавливается программно) стоянная составляющие

Полоса пропускания (-3 дБ)

Диапазоны входного напряжения ±25B; ±12,5B; ±5B; ±2,5B

(устанавливаются программно) ±1,25B; ±0,625B; ±0,25B; ±0,125B

Защита по напряжению аналоговых вхо-±150B

ДОВ

(при включенном питании) Объем буфера памяти 2048 Кбайт

Организация буфера памяти Размер буфера памяти (от 256

> байт до 2048 Кбайт), размер предыстории(от 0 до 15/16 буфера памяти) программируется кратным

степени 2.

100МГц

Обмен данными между прибором и ПК Последовательный по интерфейсу

USB 2.0.

8 бит

♦ АНАЛОГО-ЦИФРОВОЙ ПРЕОБРАЗОВАТЕЛЬ

Разрешение

Время преобразования 4нс

Максимальная частота дискретизации 250МГц на канал.

Запуск АЦП

От внутреннего кварцевого генератора 250МГц или от внешнего сигнала с частотой 50МГц-500МГц и амплитудой 0,5 В-1 В. Частота внешнего сигнала должна быть больше требуемой частоты квантования в два раза (см. Рис 5.2).

♦ СИНХРОНИЗАЦИЯ

Источник Канал 0, канал 1, внешний

Диапазоны входного напряжения внеш- $_{\pm 5B;\;\pm 0,5B}$

него сигнала синхронизации (устанавливаются программно)

Тип По фронту или по спаду.

Число уровней Не менее 200

Условия синхронизации открытый вход, Х2

(устанавливается программно) закрытый вход, X2

ВЧ (от 1МГц) НЧ (до 1МГц)

BNC

Фильтры отключены

Разъем входа внешнего сигнала синхро-

низации

Защита по напряжению входа внешнего _{±150В}

сигнала синхронизации (при включенном

питании)

Входное сопротивление (импеданс) 1МОм, 17пФ

♦ ОБЩИЕ

Шина интерфейса ПК USB 2.0

Потребляемая мощность +12B; 1 A, +5B; 0,16 A (USB)

Габариты 190х138х45мм **Масса** Не более 600 г

5.6. Устройство и работа прибора

Функциональная схема устройства ЛА-н4USB изображена на рисунке Рис.5.1.

Устройство ЛА-н4USB содержит следующие функциональные основные узлы: аналого-цифровой канал (АЦК); контроллер ОЗУ; схему синхронизации; внутреннее оперативное запоминающее устройство (ОЗУ), 8-ми канальный ЦАП для калибровки прибора, и интерфейс шины USB.

Аналого-цифровой канал

Основное назначение АЦК - преобразование исследуемого аналогового сигнала в цифровую форму, которая удобна для его дальнейшей обработки ПЭВМ.

Исследуемый аналоговый сигнал подается на входы каналов 0 и/или 1. Далее сигнал поступает на программируемый аттенюатор. Программируемый аттенюатор состоит из схем деления, усиления и аппаратного смещения напряжения входного сигнала для каждого канала.

Схемы деления и усиления позволяют привести в соответствие входные диапазоны напряжений прибора к диапазону АЦП. Напряжение смещения задается дискретно и имеет 256 уровней, что позволяет очень плавно изменять характеристику преобразования АЦП. После прохождения программируемого аттенюатора адаптированный к входному диапазону АЦП сигнал поступает на вход канала 0 и/или 1 АЦП. АЦП преобразует аналоговый сигнал в цифровую форму (цифровые данные). Цифровые данные с каналов 0 и/или 1 АЦП поступают в ОЗУ прибора, откуда могут быть считаны в компьютер.

Аналоговые вход внешней синхронизации имеет защиту от перегрузок по напряжению ±150В и отключаемый режим дифференцирования входного сигнала.

Контроллер АЦП

Основное назначение контроллера режима работы АЦП - выбор источника тактовой частоты АЦП (частоты дискретизации АЦП), управление внутренним ОЗУ и согласование работы каналов АЦП с внутренним ОЗУ.

Источник тактовой частоты АЦП внутренний или внешний.

Частоту тактового сигнала можно понизить в 2^{Π} раз, где п - целое число от 0 до 7.

Схема синхронизации

Основное назначение схемы синхронизации - осуществление одновременности начала записи данных АЦП в буфер истории ОЗУ и выполнения условий синхронизации. При каждом выполнении условий синхронизации вырабатывается синхроимпульс, который обрабатывается контроллером АЦП.

Условием синхронизации является совпадение задаваемого уровня синхронизации с уровнем сигнала от источника синхронизации. Имеется выбор условия синхронизации - по фронту или по спаду напряжения сигнала от источника синхронизации.

Источником синхронизации может быть внешний сигнал, подаваемый на разъем входа внешней синхронизации, или исследуемый аналоговый сигнал, поступающий на канал 0 или 1. Выбранный сигнал синхронизации проходит через ФВЧ 1 МГц 1^{го} порядка или через ФНЧ 1 МГц 1^{го} порядка или напрямую без фильтров непосредственно на вход компаратора. Число задаваемых уровней напряжений синхронизации – не менее 200.

Оперативное запоминающее устройство

Возможны несколько режимов работы ОЗУ.

<u>В первом режиме</u> программируется предыстория. Пока выбранный объём предыстории не заполнен, данные циклически записываются в ОЗУ, синхроимпульсы блокируются и не обрабатываются контроллером АЦП. После заполнения объема предыстории до прихода первого синхроимпульса данные АЦП продолжают циклически (непрерывно) записываться в буфер предыстории. После прихода синхроимпульса записывается часть ОЗУ, за вычетом объёма предыстории.

Во втором режиме, программируется задержка запуска записи. При запуске измерений, плата ожидает синхроимпульс, отсчитывает число запрограммированных тактов (от 0 до 10 6 точек) и только после этого дописывает заданный буфер ОЗУ. Минимальный шаг 16 точек.

Во третьем режиме, синхроимпульсы не обрабатываются.

Внимание! Если в первом или втором режиме условия синхронизации не будут выполнены, то данные, хранящиеся в ОЗУ, не могут быть считаны компьютером. Плата будет находиться в режиме записи.

Контроллер АЦП позволяет задать частоту дискретизации, размер буфера ОЗУ, размер предыстории или задержку запуска.

Схема управления

Ядром схемы управления является микропроцессор. Он не только выдает управляющие сигналы для реализации описанных функций прибора ЛА-н4USB, но и осуществляет подстройку смещения нуля и диапазонов с помощью многоканального ЦАПа. В ПЗУ микропроцессора хранятся индивидуальные для данного устройства, построечные коэффициенты. При изменении диапазона, частоты дискретизации, уровня или источника синхронизации микропроцессор считывает поправочные коэффициенты и выдает команду в соответствующий ЦАП.

Калибратор

На разъем X5 выдается меандр частотой 953,67 Гц напряжением ±1В. С помощью этого сигнала можно проверить работоспособность самого устройства ЛА-н4USB без применения специальных приборов и откалибровать АЧХ используемых щупов для работы со входом 1 МОм.

Интерфейс шины USB

Обмен данными между прибором и ПК осуществляется через контроллер шины USB в ПК.

Схема ввода/вывода полностью совместима с протоколом шины USB rev 2.0.

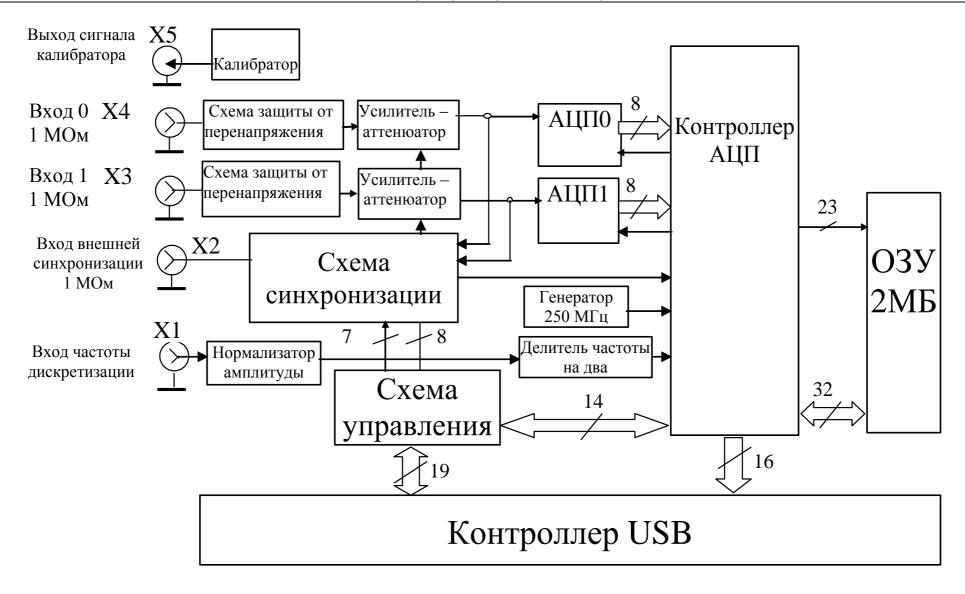
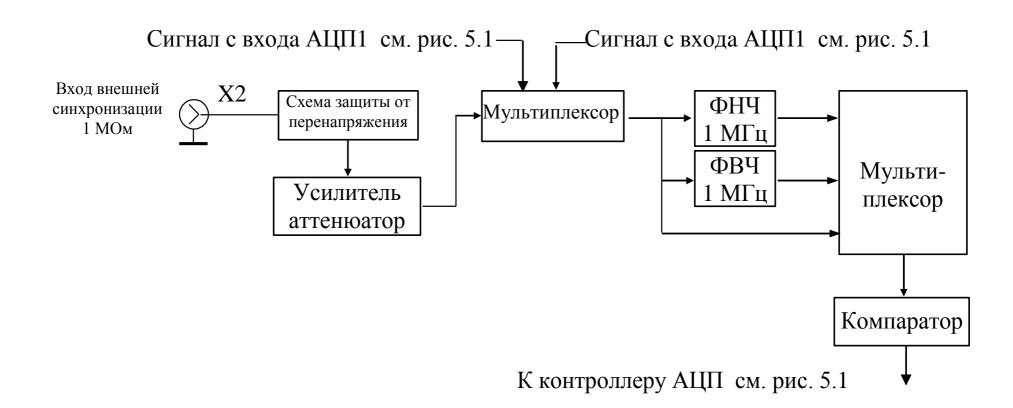



Рис. 5. 1 Функциональная схема ЛА-н4USB

Рис. 5. 2 Схема синхронизации ЛА-н4USB

6. ПОДГОТОВКА ПРИБОРА К РАБОТЕ

6.1. Эксплутационные ограничения

- 6.1.1. При больших колебаниях температур в складских и рабочих помещениях, полученные со склада устройства ЛА-н4USB необходимо выдержать не менее двух часов в нормальных условиях в упаковке.
- 6.1.2. После хранения в условиях повышенной влажности устройства

 ЛА-н4USB необходимо выдержать в нормальных условиях в течение 6 ч.
- 6.1.3. При распаковывании устройства ЛА-н4USB проверить её комплектность в соответствии с п. 5.4 на стр. 13.
- 6.1.4. Повторную упаковку устройства ЛА-н4USB производить в случае отключения её от ПЭВМ для перевозки или хранения. Перед упаковкой устройства ЛА-н4USB проверить его комплектность в соответствии с п. п. 5.4 на стр. 13.
- 6.1.5. В качестве ПЭВМ использовать IBM PC/AT-совместимый компьютер с USB интерфейсом.
- 6.1.6. После включения питания ПЭВМ с подключенным устройством ЛАн4USB проводить точные измерения не раньше времени установления рабочего режима прибора, то есть не раньше чем через 5 мин. после включения прибора.

6.2. Распаковывание и повторное упаковывание

6.2.1. При распаковывании устройства ЛА-н4USB проверить его комплектность в соответствии с п. 5.4 на стр. 13.

- 6.2.2. Распаковывание устройства ЛА-н4USB проводить следующим образом:
- 1) Открыть упаковочную коробку;
- 2) Вынуть из коробки прибор, блок питания, комплект программного обеспечения и ответные части внешних разъемов, затем вынуть эксплутационную документацию;
- 3) Произвести внешний осмотр прибора и блока питания на отсутствие повреждений;
- Проверить маркировку, пломбирование прибора в соответствии с п. 11 на стр.
 26.
- 5) Повторную упаковку прибора производить в обратном порядке в соответствии с п. 6.2.2 в случае демонтажа для его перевозки или хранения. Перед упаковкой прибора проверить его комплектность в соответствии с п. 5.4 на стр. 13.

6.3. Порядок установки

Установка прибора делится на две части:

- 1) Установка аппаратных средств (установка прибора ЛА-н4USB);
- 2) Установка программного обеспечения.

6.3.1. Установка прибора ЛА-н4USB

Далее приводится основная инструкция по установке прибора ЛА-н4USB, однако кроме неё вам также следует руководствоваться руководством пользователя или техническими советами для вашего компьютера (в комплект поставки не входит)

- 1) Установить прибор на место где он будет эксплуатироваться;
- 2) К разъёму X7 прибора присоедините кабель от источника питания.
- 3) К разъему X6 подключите кабель USB тип A-B. Второй конец кабеля подключите к ПК.
- 4) К разъёмам X<1...4> присоедините необходимые разъёмы с кабелями, соединяющими плату с периферийными устройствами источниками

аналоговых или цифровых сигналов.

- 5) Включите питание прибора при включенном ПК.
- 6) Установить (при необходимости) программное обеспечение прибора
- 7) Прибор ЛА-н4USB установлен и готов к работе.

6.3.2. Инсталляция программы

При первом подключении прибора к компьютеру, операционная система (Windows 95/98/Me/NT/2000/XP) сообщит Вам, что найдено новое устройство, и предложит установить для него драйвера.. Вставьте компакт диск, входящий в комплектацию к плате, и укажите ОС путь к компакт диску. Если Вы загрузили ПО из интернета с нашего сайта www.rudshel.ru/beta, то распакуйте содержимое файла "inf.zip" в любой временный каталог и укажите ОС путь к этому каталогу. Если установка прошла нормально, то в диспетчере устройств должно появиться новое устройство в разделе "ADC Centre ADC/DAC boards". Например, для прибора Lan4USB - "ADC centre LAn4 USB)". Если новое устройство не появилось или устройство в системе обозначается с восклицательным знаком, то следует переустановить драйвера.

После установки платы в системе можно приступать к установке программного обеспечения. ПО расположено на компакт диске. Так же Вы можете загрузить последнюю версию ПО из интернета со страницы www.rudshel.ru/beta.

Необходимо установить последовательно три дистрибутива из папки "LaSDK":

- ADCDriversSetup.exe библиотеки и драйвера для плат,
- ADCUtilitySetup.exe стандартные программы,
- ADCSamplesSetup.exe примеры программирования.

Далее следуйте инструкциям, появляющимся во время установки дистрибутива.

7. РАБОТА С ПРИБОРОМ

7.1. Порядок работы

- 7.1.1. Произведите все действия по распаковыванию и подготовке прибора к работе согласно п.6.2 на стр. 20.
- 7.1.2. Произведите подключение к разъемам устройства согласно п.7.2 и п.7.3.
- 7.1.3. С помощью утилиты ADCLab (п. 7.4) исследуйте сигнал.

7.2. Размещение разъемов на приборе

Расположение разъемов (X1 – X7) показано на рисунках (Рис 4.1 и 4.2)

7.3. Назначение и типы разъемов

Указано в таблице (Таблица 7.1)

Таблица 7.1

Разъем	Тип разъёма	Назначение
X1	LEMO	Вход внешней частоты дискретизации.
X2	BNC	Вход внешней синхронизации.
Х3	BNC	Вход аналогового канала 2
X4	BNC	Вход аналогового канала 1
X5	BNC	Выход калибратора
X6	USBB	Интерфейсный разъем USB для подключения к IBM PC/AT .
X7	DJK	Разъём подключения БП на 5В постоянного тока.

7.4. Работа с утилитой ADCLab.

Описание работы с утилитой ADCLab приведено на диске CD-ROM, поставляемой с платой.

8. ТЕКУЩИЙ РЕМОНТ

Ремонт прибора, а именно устройства ЛА-н4USB, осуществляется предприятием изготовителем ООО «Руднев-Шиляев»

Россия, 125130, г. Москва, ул. Клары Цеткин, д.33, корп.35, эт.2, помещ. VI , ком.9Г

тел/факс (495): 787-63-67; 787-63-68; (999) 839-55-96

E-mail: adc@rudshel.ru; http://www.rudshel.ru; http://www.pcboards.ru

9. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 9.1. Устройство ЛА-н4USB транспортируют в закрытых транспортных средствах любого вида.
- 9.2. При транспортировании самолетом ЛА-н4USB должно быть размещено в отапливаемом герметизируемом отсеке.
- 9.3. Климатические условия транспортирования ЛА-н4USB не должны выходить за пределы предельных условий, указанных в таблице (Таблица 10. 1). По механическим воздействиям предельные условия транспортирования должны соответствовать требованиям группы 3 согласно ГОСТ 22261-94.

Таблица 10. 1 Предельные условия транспортирования

Температура окружающего воздуха	От минус 25 до плюс 55 °C
Относительная влажность воздуха	95 % при 25 °C
Атмосферное давление	70 – 106,7 кПа (537 – 800 мм рт. ст.)

- 9.4. Устройство ЛА-н4USB до введения в эксплуатацию следует хранить на складах в упаковке предприятия-изготовителя при температуре окружающего воздуха 5 40 °C и относительной влажности воздуха 80 %.
- 9.5. Хранить ЛА-н4USB без упаковки следует при температуре окружающего воздуха 10 35 °C и относительной влажности воздуха 80 % при температуре.
- 9.6. В помещениях для хранения содержание пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию, не должно превышать содержание коррозионно-активных агентов для атмосферы типа 1 по ГОСТ 15150–69.

10. ТАРА И УПАКОВКА

Устройство ЛА-н4USB упаковывается в полиэтиленовый пакет, а затем в упаковочную коробку (см. п. 5.4 на стр. 13). В эту же упаковочную коробку укладывается комплект поставки прибор, перечисленный в п. 5.4 на стр. 13.

11. МАРКИРОВКА

Обозначение прибора указывается на его передней или задней панели. Дата выпуска, серийный номер прибора обозначается на наклейке (ярлыке). Пломбирование прибора осуществляется путем наклейки ярлыка на нижней поверхности корпуса. на месте, закрывающем один из винтов крепления крышки корпуса прибора.

Примечание!

Во избежание разрушения ярлыка и утраты потребителем права на гарантийный ремонт, необходимо оберегать ярлык от воздействия агрессивных жидкостей, растворителей и механических повреждений.

ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Гарантийный талон на Внешнее устройство аналого-цифрового преобразования для IBM PC/AT-совместимых компьютеров ЛА-н4USB Зав.№ ООО «Руднев-Шиляев» гарантирует безотказную работу устройства ЛА-н4USB в течение 18 месяцев со дня продажи потребителю при соблюдении потребителем условий и правил эксплуатации, транспортирования и хранения, установленных руководством по эксплуатации устройства ЛА-н4USB. В период гарантийного срока предприятие-изготовитель осуществляет бесплатный ремонт прибора в случае обнаружения неисправности по вине предприятия-изготовителя. Ten/Φ акс (495) 787-63-67, 787-63-68.				
Подпись представителя фирмы				
МП				
линия отреза (эта часть остается у изготовителя)				
Гарантийный талон на Внешнее устройство аналого-цифрового пре для IBM PC/AT-совместимых компьютеров ЛА-н4USB Зав.№	образования			
ООО «Руднев-Шиляев» гарантирует безотказную работу устройства ЛА-н4US месяцев со дня продажи потребителю при соблюдении потребителем условий плуатации, транспортирования и хранения, установленных руководством по э устройства ЛА-н4USB. В период гарантийного срока предприятие-изготовител ет бесплатный ремонт прибора в случае обнаружения неисправности по вине изготовителя.	й и правил экс- ксплуатации в осуществля-			
Предприятие-потребитель, наименование и адрес:				
Место и характер дефекта, содержание ремонта:				
Дата ремонта: 200 г.				
Подпись лица производившего ремонт:				
Подпись владельца устройства ЛА-н4USB, подтверждающего ремонт:				